On the Design of Diploid Genetic Algorithms for Problem Optimization in Dynamic Environments [CEC7508]
نویسنده
چکیده
Using diploidy and dominance is one method to enhance the performance of genetic algorithms in dynamic environments. For diploidy genetic algorithms, there are two key design factors: the cardinality of genotypic alleles and the uncertainty in the dominance scheme. This paper investigates the effect of these two factors on the performance of diploidy genetic algorithms in dynamic environments. A generalized diploidy and dominance scheme is proposed for diploidy genetic algorithms, where the cardinality of genotypic alleles and/or the uncertainty in the dominance scheme can be easily tuned and studied. The experimental results show the efficiency of increasing genotypic cardinality rather than introducing uncertainty in the dominance scheme.
منابع مشابه
Chaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments
Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...
متن کاملA Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملAERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کاملApplying Genetic Algorithm to Dynamic Layout Problem
In today’s economy, manufacturing plants must be able to operate efficiently and respond quickly to changes in the product mix and demand.[1] Layout design has a significant impact on manufacturing efficiency. Initially, it was treated as a static decision but due to improvements in technology, it is possible to rearrange the manufacturing facilities in different scenarios. The Plant layout...
متن کاملClustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization
So far, various optimization methods have been proposed, and swarm intelligence algorithms have gathered a lot of attention by academia. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments well. In this paper, a novel collective optimization algorithm, namely the Clus...
متن کامل